Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization.

نویسندگان

  • A Cahana
  • T Escamez
  • R S Nowakowski
  • N L Hayes
  • M Giacobini
  • A von Holst
  • O Shmueli
  • T Sapir
  • S K McConnell
  • W Wurst
  • S Martinez
  • O Reiner
چکیده

Lissencephaly is a severe brain malformation in humans. To study the function of the gene mutated in lissencephaly (LIS1), we deleted the first coding exon from the mouse Lis1 gene. The deletion resulted in a shorter protein (sLIS1) that initiates from the second methionine, a unique situation because most LIS1 mutations result in a null allele. This mutation mimics a mutation described in one lissencephaly patient with a milder phenotype. Homozygotes are early lethal, although heterozygotes are viable and fertile. Most strikingly, the morphology of cortical neurons and radial glia is aberrant in the developing cortex, and the neurons migrate more slowly. This is the first demonstration, to our knowledge, of a cellular abnormality in the migrating neurons after Lis1 mutation. Moreover, cortical plate splitting and thalomocortical innervation are also abnormal. Biochemically, the mutant protein is not capable of dimerization, and enzymatic activity is elevated in the embryos, thus a demonstration of the in vivo role of LIS1 as a subunit of PAF-AH. This mutation allows us to determine a hierarchy of functions that are sensitive to LIS1 dosage, thus promoting our understanding of the role of LIS1 in the developing cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple dose-dependent effects of Lis1 on cerebral cortical development.

Humans with heterozygous inactivating mutations of the Lis1 gene display type I lissencephaly, a severe form of cortical dysplasia hypothesized to result from abnormal neuronal migration. Previously we reported the construction of an allelic series of the Lis1 gene in mice to analyze the effects of graded reduction of LIS1 protein on the pathogenesis of this disorder and demonstrated a cell aut...

متن کامل

Interaction between LIS1 and doublecortin, two lissencephaly gene products.

Mutations in either LIS1 or DCX are the most common cause for type I lissencephaly. Here we report that LIS1 and DCX interact physically both in vitro and in vivo. Epitope-tagged DCX transiently expressed in COS cells can be co-immunoprecipitated with endogenous LIS1. Furthermore, endogenous DCX could be co-immunoprecipitated with endogenous LIS1 in embryonic brain extracts, demonstrating an in...

متن کامل

Lissencephaly gene (LIS1) expression in the CNS suggests a role in neuronal migration.

Miller-Dieker lissencephaly syndrome (MDS) is a human developmental brain malformation caused by neuronal migration defects resulting in abnormal layering of the cerebral cortex. LIS1, the gene defective in MDS, encodes a subunit of brain platelet-activating factor (PAF) acetylhydrolase which inactivates PAF, a neuroregulatory molecule. We have isolated murine cDNAs homologous to human LIS1 and...

متن کامل

LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex.

Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used deta...

متن کامل

Lis1 controls dynamics of neuronal filopodia and spines to impact synaptogenesis and social behaviour

LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 11  شماره 

صفحات  -

تاریخ انتشار 2001